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Predicting anti-cancer drug sensitivity
through WRE-XGBoost algorithm with
weighted feature selection
Accurate prediction of drug susceptibility is one of the most
important steps in personalized medicine. Applications of
machine learning to pharmacogenomic data for sensitivity
prediction can help study the mechanism of drug response
and find more effective anti-tumor drugs. At present, most
machine learning algorithms for predicting the drug sensi-
tivity of cancer cell lines involve gene-level characteristics.
However, the auxiliary information of drugs has been
proved to improve the prediction accuracy by providing a
priori information for drug response. Here, we developed
the WRE-XGBoost model, using gene expression of cell lines
and drug properties as input, which consists of a weighted
algorithm of the random forest regression and elastic net
regression (WRE) to select the important features and an
improved XGBoost algorithm associating with particle
swarm optimization to predict cell viability (Fig. S1). The
experimental results of our model were superior to
frequently used machine learning methods through cross-
validation.

First, we compared our feature selection method WRE
with other two methods, random forest (RF) and
SelectKBest (KBest). To evaluate the performance of WRE,
RF, and KBest, we used Pearson’s correlation coefficients
and coefficient of determination (R2) as performance
measures for the prediction of cell viability in the COSMIC-
CTRP dataset (Fig. 1A, B). Synthetically, WRE achieved the
best performance in the prediction of cell viability.
Furthermore, it can be found that the predictive perfor-
mance of all three feature selection methods gradually
improved with the increase in drug concentration. Mean-
while, we verified the feature selection method WRE based
on the CCLE-O’Neil dataset (Fig. 1C). Among the three
feature selection models, WRE tended to make better
predictions for most drugs. The key features selected by
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WRE were ranked according to their importance scores
among different drug concentrations (Table S1). Drug
properties accounted for most of the top ten key features
at all drug concentrations. In addition, the number of
features selected by our method increased with the in-
crease in drug concentration and the prediction perfor-
mance of the model became gradually stable. To a certain
degree, it could explain the phenomenon that the predic-
tion performance of the model became better with the
increase in drug concentration. To gain a deeper under-
standing of the biological functions of the selected genes,
we analyzed the selected characteristic genes when drug
concentration equaled 2.1 mmol/L. Figure 1D and S4B pre-
sent the enrichment analysis of selected 289 genes using
the KEGG data set. The two enrichment pathways with the
highest significance, mucin-type O-glycan biosynthesis and
other types of O-glycan biosynthesis were both related to
O-linked glycosylation, which is one of the important
characteristics of tumors, involved in all aspects of tumor
occurrence and metastasis.1

Further, we made comparisons with existing machine
learning methods including RF, k-NearestNeighbor (KNN),
support vector regression (SVR), elastic net (EN), and lasso
regression (Lasso) to evaluate the performance of the WRE-
XGBoost model. Figure 1E presents the distribution of
Pearson’s correlation coefficients under the condition of
drug concentration Z 8.3 mmol/L. WRE-XGBoost obtained
the highest correlation, closely followed by RF. At the same
time, we pooled our predictions across all drugs and cell
lines and obtained a Pearson’s correlation coefficient of
0.77 between predicted and observed cell viabilities
(R2 Z 0.59; P < 2.0e-08) (Fig. 1F). To determine whether
sensitive and resistant drugs affect cell viability in a sig-
nificant manner, we binarized the drug sensitivity data
according to mean variance. We first normalized the data
to zero mean, and the mean value of the data became zero.
We then binarized the data based on variance, dividing the
behalf of KeAi Communications Co., Ltd. This is an open access
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Figure 1 Performance comparison and analysis of the WRE-XGBoost model and its prediction on lung cancer cell lines. (A) The
bar plot of Pearson’s correlation coefficients using three feature selection methods in the COSMIC-CTRP dataset. (B) The bar plot of
the coefficient of determination using three feature selection methods in the COSMIC-CTRP dataset. (C) The bar plot of Pearson’s
correlation coefficients using three feature selection methods in the CCLE-O’Neil dataset. (D) Enrichment analysis of screened
genomic features in the COSMIC-CTRP dataset (drug concentration Z 2.1 umol/L) (E) Comparison of drug response prediction
across six machine learning algorithms in the COSMIC-CTRP dataset. (F) The scatter plot demonstrating the performance of WRE-
XGBoost in the COSMIC-CTRP dataset. (G, H) The bar plot presenting the comparison of the sensitive drug group with the resistant
drug group in the COSMIC-CTRP dataset. (I) The bar plot presenting the cell viability of the cell line A375 in different drugs. (J) The
bar plot presenting the cell viability of the drug vorinostat in different drugs. (K) The heatmap presenting predicted cell viability
(Z-score log2) for 140 drugs across 12 lung cancer cell lines. (L) The cell lines selected from four subtypes of lung cancer. (M) The
ridge plot presenting the overall distribution of predicted cell viability (Z-score log2) across five lung cancer cell lines.
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dataset into two groups on average, sensitive drugs and
resistant drugs. A drug was defined as sensitive if it was
below the mean variance of cell viability minus 0.5
(viability � VarðviabilityÞ� 0:5) and as resistant if it was
above the mean variance minus 0.5 (viability �
VarðviabilityÞ� 0:5). Figure 1G and H present the
significance levels of prediction when the drug concentra-
tions equaled 0.13 mmol/L and 2.1 mmol/L. The results
showed that there were significant differences in the mean
values of distinguishing sensitive drugs from resistant drugs
using the predicted model. Similarly, we also verified the
machine learning method using the CCLE-O’Neil dataset
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(Fig. S2). Our model achieved the best prediction results in
11 of 24 CCLE anti-cancer drugs. The results showed that
our method can significantly improve the performance of
drug response prediction. In addition to cell viability pre-
diction through the predictive models, we checked the
consistency of the predicted results with the literature
(Fig. 1I, J). From Figure 1I, we found that the cell viability
of the A375 cell line belonging to melanoma under the ac-
tion of paclitaxel was much lower than other drugs. Studies
have confirmed that the growth of melanoma cells can be
effectively inhibited by paclitaxel combined with Icariside
II at a clinically acceptable concentration and paclitaxel
has great potential for the treatment of melanoma.2 The
high sensitivity of NCIH211 and NCIH228, both small cell
lung cancer cell lines, to vorinostat indicated inhibition.
Researchers found that vorinostat combined with cisplatin
can reduce the toxicity of small-cell lung cancer and reduce
the adverse reactions of the drug (Fig. 1J).3

Finally, the lung cancer cell lines were used to verify our
possibility of inferring drugs in precision oncology based on
WRE-XGBoost prediction. Lung cancer clinically includes
non-small cell lung cancer and small cell lung cancer. Non-
small cell lung cancer is further divided into lung adeno-
carcinoma, lung squamous cell carcinoma, and large cell
lung carcinoma. Small cell lung cancer can only be clinically
classified to a limited extent and is the most malignant
cancer in lung cancer, so it was not classified further in our
experiment. We predicted drug response for each of 12 cell
lines from four subtypes of lung cancer for 140 drugs (Fig. 1L
and Table S2) in the COSMIC-CTRP dataset (Fig. 1K).
Different subtypes of lung cancer cell lines achieved certain
accuracy in clustering in which lung adenocarcinoma and
lung squamous cell carcinoma could be basically clustered
together. According to Figure 1K, M, NCIH522 and NCIH1092
were predicted to be the most sensitive to these drugs and
A549 was predicted to be the least sensitive. From the
heatmap distribution, we found three drugs that were more
effective for the drug response of comprehensive lung can-
cer cell lines: AZD7762, obatoclax, and bardoxolone methyl.
CHK1 inhibitor AZD7762 was significantly correlated with
lepidic score, and the regulation of DNA damage and cell
cycle response by the CHK1 pathway was considered to be
one of the reasons for the therapeutic resistance of lung
cancer.4 Obatoclax induced apoptosis in multiple small cell
lung cancer cell lines and it was considered to be a drug
regimen used to activate cell lines before chemotherapy.5

The experimental results of our model can be correlated
with the literature on anti-cancer drugs to prove the pre-
dictive effects.

In summary, this study proposes the algorithm WRE-
XGBoost to predict cell line viability based on gene expres-
sion and drug properties. The use of these predictions to
prioritize promising drugs for clinical application can reduce
the time and cost of discovering newly available drugs.
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